芝诺悖论—阿基里斯和乌龟赛跑的解释

  • A+
所属分类:趣味数学
摘要

现在人们广为流传的芝诺悖论﹝Zeno's Paradoxes﹞都是关于运动的,即(1)阿基里斯和乌龟赛跑;(2)两分法悖论;(3)飞矢不动;(4)运动场问题等。其中「阿基里斯和乌龟赛跑」是最著名的一个。
乌龟和阿基里斯﹝Achilles﹞赛跑,乌龟提前跑了一段──不妨设为100米,而阿基里斯的速度比乌龟快得多──不妨设他的速度为乌龟的10倍,这样当阿基里斯跑了100米到乌龟的出发点时,乌龟向前跑了10米;当阿基里斯再追了这10米时,乌龟又向前跑了1米,……如此继续下去,因为追赶者必须首先到达被追赶者的原来位置,所以被追赶者总是在追赶者的前面,由此得出阿基里斯永远追不上乌龟。这显然与人们在生活中的实际情况是不相符合的。
这些悖论是公元前五世纪古希腊的数学家兼哲学家齐诺﹝曾属于哥达华拉斯学派﹞提出的。齐诺的原文已经失传,流传下来的是亚里士多德为批判他而作的引述。由于对离散与连续的关系弄不清楚,在以后两千多年中无法证明悖论错在何处,其实对「阿基里斯和乌龟赛跑」这样的问题,现在的高中学生只须用无穷等比数列求和﹝公比的绝对值小于1﹞公式
详细解释:芝诺悖论—阿基里斯和乌龟赛跑的解释.doc

avatar

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: