1、据说清乾隆曾经宴请65岁以上的老人到京城。有一位老寿星年高141岁,乾隆看到了非常高兴,就以这位寿星的岁数为题,说出上联,并要纪晓岚对出下联:
乾隆帝的上联是:花甲重开,又加三七岁月。
纪晓岚的下联是:古稀双庆,更多一度春秋。
上、下两联都是一道多步计算应用题,答案都是141岁。上联的“花甲”是指60岁,“重开”就是两个60岁,“三七”是21岁,就是60×2+7×3=141(岁)。下联的“古稀”是指70岁,“双庆”就是两个70岁,多“一度春秋”就是多1岁,也就是70×2+1=141(岁)。
2、下面一副对联,也是两道算题,并巧妙用上一、三、七、九、十各数,不嫌生拼硬凑。
尺蛇入穴,量量九寸零十分;
七鸭浮江,数数三双多一只。
上联是讲蛇的长度,九寸加十分是一尺(旧制长度单位进率是1尺=10寸,1寸=10分);下联是讲鸭的只数,三双加一只是七只。
3、百羊问题
明代大数学家程大位著的《算法统宗》一书,有一道诗歌形式的数学应用题,叫百羊问题。
甲赶羊群逐草茂,乙拽一羊随其后,
戏问甲及一百否?甲云所说无差谬,
所得这般一群凑,再添半群小半群,
得你一只来方凑,玄机奥妙谁猜透?
此题的意思是:一个牧羊人赶着一群羊去寻找青草茂盛的地方。有一个牵着一只羊的人从后面跟来,并问牧羊人:“你的这群羊有100只吗?”牧羊人说:“如果我再有这样一群羊,加上这群羊的一半又1/4群,连同你这一只羊,就刚好满100只。”谁能用巧妙的方法求出这群羊有多少只?
此题的解是:
(100-1)÷(1+1+1/2+1/4)=36只
4、李白打酒
李白街上走,提壶去打酒;
遇店加一倍,见花喝一斗;
三遇店和花,喝光壶中酒。
试问酒壶中,原有多少酒?
这是一道民间算题。题意是:李白在街上走,提着酒壶边喝边打酒,每次遇到酒店将壶中酒加一倍,每次遇到花就喝去一斗(斗是古代容量单位,1斗=10升),这样遇店见花各3次,把酒喝完。问壶中原来有酒多少?
此题用方程解。设壶中原来有酒x斗。得[(2x-1)×2-1]×2-1=0,解得x=7/8。
5、百馍百僧
明代大数学家程大位著的《算法统宗》中有这样一题:
一百馒头一百僧,大僧三个更无增;
小僧三人分一个,大小和尚各几丁?
这题可用假设法求解。现假设大和尚100个,(3×100-100)÷(3-1÷3)=75(人)…………小和尚人数100-75=25(人)大和尚人数
6、哑子买肉
这也是程大位《算法统宗》中的一道算题:哑子来买肉,难言钱数目,一斤少四十,九两多十六。试问能算者,今与多少肉?此题题意用线段图表示,就一目了然。附图{图}
由图可以看出:
每两肉价是:(40+16)÷(16-9)=8(文)哑子带的钱:8×16-40=88(文)哑子能买到的肉:88÷8=11(两)(注:旧制1斤=16两)
7、及时梨果
元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:
九百九十九文钱,及时梨果买一千,
一十一文梨九个,七枚果子四文钱。
问:梨果多少价几何?
此题的题意是:用999文钱买得梨和果共1000个,梨11文买9个,果4文买7个。问买梨、果各几个,各付多少钱?

梨每个价:11÷9=12/9(文)
果每个价:4÷7=4/7(文)
果的个数:
(12/9×1000-999)÷(12/9-4/7)=343(个)梨的个数:1000-343=657(个)梨的总价:
12/9×657=803(文)
果的总价:
4/7×343=196(文)
8、隔壁分银
只闻隔壁客分银,不知人数不知银,四两一份多四两,半斤一份少半斤。
试问各位能算者,多少客人多少银?
此题是民间算题,用方程解比较方便。
设客人为x人。则得方程:
4x+4=8x-8

x=3,4×3+4=16
答:客人3人,银16两。
(注:旧制1斤=16两,半斤=8两)
9、宝塔装灯
这是明代数学家吴敬偏著的《九章算法比类大全》中的一道题,题目是:
远望巍巍塔七层,红光点点倍加增,
共灯三百八十一,请问顶层几盏灯?
解各层倍数和:
1+2+4+8+16+32+64=127顶层的盏数:381÷127=3(盏)