塑料杯问题


    奎贝尔教授出了个难题.奎贝尔教授:"取三个喝咖啡用的泡沫塑料空杯,把11枚硬币投入杯子中,要求每一只杯子中的硬币数目都是奇数.奎贝尔教授:"这不难做到,是吗?方法很多,你可以在一只杯子中放入一枚硬币,第二只杯子中放入三枚硬币,最后一个杯子中放入七枚硬币.这的确很容易.奎贝尔教授:"但是,你能否把十枚硬币放入同样的杯子中,使得每只杯子中的硬币数都是奇数?这也是能够办到的,不过你得动点脑筋才行.奎贝尔教授:"但愿你还没有泄气.你只要想到把其中一只杯子放入另一只装着偶数个硬币的杯子中,就使每只杯子中都是奇数枚硬币了."
    啊哈!一旦悟出杯中套杯,同一个集合的硬币可以属于不止一只杯子,这个棘手的问题也就迎刃而解了.用集合论的术语来说,我们的解是7个元素的集合和3个元素的集合,后一个集合又包含1个元素的子集.此解可以用图表示如下:

 

           


   1

     2




     7



   试求所有其余的解亦很有趣.要得到十个解并不困难,上述解法即为其中之一.但若要发现其余的五个解,或者说十五个全部的解,却还需要花费一番精力.求出十五个解之后,可以把硬币和杯子的数目,以及对于每只杯中放入硬币数的要求作一些改变,从而产生一些新的问题.领悟到一个集合的部分或全部可以包含于另一个集合之中,从而可以作两次计算,这是解决许多著名难题和悖论问题的钥匙.下面是一个趣味问题.
    一个男孩子逃学已经数周,学校考勤人员找到了他.小孩开始向他解释为何没有时间上学:
    "我每天睡觉需要8小时,8X365总共2920小时,一天有24小时,所以2920/24即122天.
    "星期六和星期日不用上学.一年总共约有104天.
    "我们还有60天暑假.
    "我一天吃饭需要花3小时,一年就要3X365,共有1095 小时,共有1095/24即45天左右.
    "我每天还需要2小时的课外活动.算起来一年也要有2X365,共730小时,或730/24即30天左右."
    小孩把所有这些天数相加如下:

睡觉            122
周末            104
暑假             60
用餐             45
课外活动         30
               ------
                361天
    "你瞧,"小孩说"仅剩下4天用作病假,我还没把学校每年应放的节假日算进去呢!"
    考勤人员听了后对小孩的数字研究了半天,看不出有什么破绽.请你的朋友们试试这个悖论问题,看有多少人能够指出其谬误所在,即把子集不止一次地算进去.这孩子所说的各项就像奎贝尔教授杯子中套杯子的硬币一样重复地作了相加.